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When a liquid meniscus held at the exit of a metallic capillary tube is charged to a high 
voltage V, the free surface often takes the form of a cone whose apex emits a steady 
microjet, and thus injects a certain charge I and liquid volume Q per unit time into the 
surrounding gas. This work deals with liquids with relatively large conductivities K, for 
which the jet diameter dj is much smaller than the diameter d, of the capillary tube. In 
the limit dJd, + 0, the structure of the jet (dj and I, in particular) becomes independent 
of electrostatic parameters such as V or the electrode configuration, being governed 
mostly by the liquid properties and flow rate Q. Furthermore, the measured current is 
given approximately by I =A€) (yQK/e)i for a wide variety of liquids and conditions 
(e, and y are, respectively, the dielectric constant of the liquid and the coefficient of 
interfacial tension; As) is shown in figure 1 I). The following explanation is proposed 
for this behaviour. Convection associated with the liquid flow Q transports the net 
surface charge towards the cone tip. This upsets the electrostatic surface charge 
distribution slightly at distances r from the apex large compared to a certain charge 
relaxation length A, but substantially when r - A. When the fluid motion is modelled 
as a sink flow, h is of the order of r* = (Qse,/K)g (e,, is the electrical permittivity of 
vacuum). If, in addition, the surface charge density is described through Taylor's 
theory, the corresponding surface current convected towards the apex scales as 
I, - (yQK/c)i, as observed for the spray current. The sink flow hypothesis is shown to 
be realistic for sufficiently small jet Reynolds numbers. In a few photographs of 
ethylene glycol cone jets, we find the rough scaling di - 0.4r* for the jet diameter, 
which shows that the jet forms as soon as charge relaxation effects set in. In the limit 
E + 1, an upper bound is found for the convected current at the virtual cone apex, 
which accounts for only one-quarter of the total measured spray current. The rest of 
the charge must accordingly reach the head of the jet by conduction through the bulk. 

1. Introduction 
When the interface between a gas and a conducting liquid is charged to a sufficiently 

high electrical potential, it often takes the form of a stable cone, whose apex emits a 
microscopic liquid filament (figure 1). Although such remarkable structures have been 
studied systematically for a long time (Zeleny 1914, 1915, 1917; Taylor 1964, p. 392), 
very little is known theoretically on the phenomena controlling either the microjet 
streaming from the cone apex, or the magnitude of the current I it emits. One knows, 
however, that the radius of this jet may vary in practice from atomic dimensions in 
liquid metals (Benasayag & Sudraud 1985; Gabovich 1984) up to hundreds of 
micrometers in liquids with conductivities Kin the range of lo-' S m-l (Jones & Thong 
1971 ; Gomez & Tang 1991 a, b, Cloupeau & Prunet-Foch 1989). These jets are far 
longer and substantially less unstable than their uncharged counterparts, but eventually 
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(a) (b) 

FIGURE 1. Photographs of electrified cones of ethylene glycol (EG-5 in table 2) at various extreme 
electrostatic conditions within which the emitted current depends only on flow rate and not on 
voltage difference V, or the distance L between needle and ground. In (a) and (b) V = 5 kV (I, = 
41 .O nA) and 3 kV (I, = 41.6 nA), respectively; L = 9 mm. In (c) the liquid reaches the surface before 
opening into a spray. 

break into a spray (electrospray) of droplets which are often of a single size and may 
be charged near the maximum value permitted by the Rayleigh instability. Such a 
singular behaviour has led to numerous studies of the phenomenon and to a wide 
variety of applications (Bailey 1988). Interest in electrosprays has been recently 
revitalized by the discovery in 1988 of so-called ‘electrospray ionization’ as a way of 
converting solution ions into highly charged gas-phase ions of macromolecules (see the 
review by Fenn et al. 1989). The unusually high charge level in these macro-ions allows 
their mass analysis in simple quadrupole filters, a circumstance which has literally 
revolutionized the mass spectrometry of proteins and other large biomolecules (Smith 
et al. 1991 discuss over 300 related references). Consequently, there is now a growing 
need to understand the fundamental mechanisms behind this phenomenon. 

An electrohydrostatic explanation of these pointed menisci was proposed by G. I. 
Taylor in 1964, leading to their being frequently called ‘Taylor cones’. This theory 
yields an expression for the charge density (T (C m-’) at the interface, which is 
compatible with the observed onset voltages for cone formation. But Taylor’s cone 
must necessarily have an angle ccT = 49.29”, in contradiction to experiments, where 
other values are observed (Hayati, Bailey & Tadros 1987a, b). An extension of Taylor’s 
analysis with a simple model incorporating the space charge field due to the spray 
(Fernandez de la Mora 1992) has recently relaxed the paradoxical impossibility of cone 
angles a < aT. The model assumes that the droplets are small enough for their inertia 
to be negligible, and that the spray is a cone of angle /?whose apex coincides with that 
of the meniscus. It predicts a relation a(/?), which is in acceptable agreement with 
measurements for the case of sprays of submicron droplets. In less conductive liquids, 
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where jets as long as the cone basis d, separate the meniscus from the spray, the 
existence of sharply conical menisci with CL 8 aT (see figure 1, and the photograph in 
Fernindez de la Mora & Gomez 1993) remains unexplained. 

The present investigation is on the basic mechanisms and scaling laws controlling the 
current emitted by Taylor cones, which bears directly on the amount of charge carried 
by the spray droplets. Its organization is the following. Section 2 describes a 
preliminary experimental exploration showing that the current transmitted by relatively 
conducting electrified liquid cones is nearly independent of electrostatic boundary 
conditions (voltages and electrode shapes). This study reveals also what appears to be 
a square-root dependence Z - Q-i between the spray current Z and the liquid flow rate 
Q. A few measurements of jet diameters dj show that they scale with a certain 
characteristic length r* - Qi. Section 3 offers a preliminary explanation for this 
behaviour, indicating further that the characteristic quantity I* - (yKQ/e)$ is an 
appropriate measure for the current carried by the jet (6 and y are, respectively, the 
dielectric constant of the liquid and the coefficient of interfacial tension). Section 4 
describes a detailed experimental study of the dependence of the emitted current on the 
quantities K ,  Q and E ,  where all the data are found to be represented approximately by 
I =f(e) (yKQ/c)i. Section 5 takes further the analysis of section 3 to yield the internal 
electric field and surface shear stresses in the conical region far from the apex. It also 
studies the asymptotic limit E % 1, in which an upper bound is found for the current 
I, carried by convection of surface charge near the apex. This bound accounts only for 
one-quarter of the measured current, implying that much of the jet current is still 
transported by conduction in the apex region. The validity of some of the hypotheses 
made is assessed in $6, while $7 collects the main conclusions. 

2. Preliminary experimental observations 
Let us define the ‘electrospray current’ Z as the charge streaming from the cone tip 

per unit time. Let us also, for definiteness, choose a configuration in which the charged 
liquid is held at the exit of a metal capillary needle (figure 1 c) facing perpendicularly 
a flat grounded electrode. The volumetric flow rate Q of liquid ejected through the jet 
can accordingly be controlled by supplying it through the needle. The quantity Z we 
wish to characterize could depend on, among other variables, 

(i) liquid flow rate Q ;  
(ii) liquid properties such as viscosity coefficient p, electrical conductivity K, density 

p, dielectric constant 8, mobilities f+ and f- of the dissolved ions, etc., interfacial 
tension coefficient y ; 

(iii) distance between the electrodes and diameter of the high-voltage needle holding 
the liquid; 

(iv) voltage difference V between the capillary needle and the ground electrode; 
(v) properties of the gas: the density and viscosity affect negligibly the motion of 

the meniscus and the jet, though they may affect the drift of the spray droplets towards 
the ground plate. The dielectric constant is taken to be unity. The resistance to 
electrical breakdown is ignored since a cone jet forms only in the absence of gas 
discharges. The electrical conductivity of the gas is thus negligible. 

2.1. Irrelevance of the spray and the electrostatic variables at high conductivities 
Remarkably enough, for all the liquids tested with conductivities K roughly in the 
range of S m-l and above, we find that, as long as a stable cone can be formed and 
Q is held constant, Zis practically independent of the needle voltage V, or the geometry 
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FIGURE 2. Log-log plot of the spray current Zvs.  flow rate Q for 1-octanol seed with various volume 
fractions of sulphuric acid, as indicated by the symbols. The data for 0.3 % acid contain three I@) 
curves at V =  4, 4.5 and 5 kV, which are practically indistinguishable from each other. S is the 
regression slope dln Ildln Q (solid lines). 

of the electrodes. For the case of dioxane seeded with formamide, Cloupeau & Prunet- 
Foch (1989) have reported curves I (Q) for which I becomes decreasingly dependent on 
needle voltage at increasing conductivities. Such behaviour is illustrated in figure 1 (a, 
b) for the case of ethylene glycol seeded with LiCl (low4 molar; K = 5 x S m-I). 
The liquid is held on a stainless steel needle with an outer diameter of 1.07 mm and a 
roughly conically tapered tip ending sharply at a diameter of 0.81 mm. The currents 
nearly coincide in figures l(a) and l(b) with identical flow rates and electrode 
geometries (I, = 41 -0 nA; I ,  = 41.6 nA), but rather different capillary voltages 
(V, = 5 kV; V, = 3 kV), which lead to drastically different meniscus shapes. Figure 1 (c)  
illustrates an extreme configuration where the meniscus is rather close to the ground 
electrode, so that the jet reaches it while still intact (or if already broken into droplets, 
before these have dispersed into a spray). Yet, at a fixed flow rate, the current takes 
nearly the same value as in the case of a more distant ground electrode reached by the 
liquid in the form of a spray. Figure 2 is a log-log plot of the spray current I us. flow 
rate Q for 1-octanol seeded with various volume fractions of sulphuric acid, as 
indicated by the symbols. The data for 0.3% H,SO, contain three I(Q) curves at 
V = 4,4.5 and 5 kV, which are practically indistinguishable from each other. Similarly, 
figure 3 shows the spray current versus pressure drop across the feeding line 
(proportional to flow rate) for two different solutions of formamide. Although each 
was taken with two different needles having inner/outer diameters of 0.24 mm/0.41 
mm; and 0.81 mm/l.O7 mm, respectively, the corresponding curves are nearly 
identical. The needle diameter is therefore also an irrelevant parameter. 

Accordingly, for a given liquid, the I(Q) curves resulting at different values of either 
the needle voltage V or diameter d,, the distance between its tip and the ground plate, 
the meniscus shape and the spray structure, are nearly coincident. It thus appears as 



The current emitted by highly conducting Taylor cones 

2oo i 
I60 1 5 

b 

rn 
*e 

0 

159 

0 200 400 600 800 1000 1200 

AP (Torr) 

FIGURE 3. Spray current versus pressure drop across the feeding line (proportional to flow rate) for 
two different solutions of formamide. There are two sets of data for each solution, taken with two 
different needles (denoted small and large) having inner and outer diameters of 0.24 and 0.41 mm; 
and 0.81 and 1.07 mm, respectively. Z is also independent of needle diameter. 

if the cone jet were a constant-current generator, insensitive to the surrounding 
electrostatic environment. However, this simple behaviour does not hold in general for 
liquids with small electrical conductivities. Also, the domain in Q-Vspace in which the 
conical meniscus is stable does depend on electrode geometry. 

2.2. The I N  Qi law for  the spray current 
Equally noteworthy from figure 2 is the fact that the Z(Q) curves appear to be straight 
lines in logarithmic coordinates, with slopes enticingly close to $7 Such remarkable 
simplicity suggests an elementary current-carrying mechanism, and should greatly 
simplify the task of understanding charge transport in Taylor cones. 

2.3. Jet diameter 
The main thrust of the present study is on the current carried by the jet. However, it 
is important for the interpretation of the experiments to have some knowledge of the 
geometry of the jet. We have accordingly taken a series of photographs of cone jets 
from a solution of LiCl in ethylene glycol ( K  = 5 x lop5 S m-') at higher magnification 
than in figure 1. The flow rates were in the range 0.51 d 3;) < 2.01, in terms of the 
dimensionless parameter 3;) 

7 = b K Q / ( ~ d l ~ ~  (1) 

where F,, is the electrical permittivity of vacuum (taken to be identical to that of the 
gas). Figure 4 is a photo of the jet corresponding to the largest of these flow rates, 

f This t power is clearly larger than the one we infer from figure 8 of Cloupeau & Prunet-Foch 
(1989), whose liquid (dioxane) is considerably less conducting and polar than ours. 

6-2 
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FIGURE 4. Structure of the cone jet for the same solution as figure 1 at higher magnification. 
The dimensionless flow rate variable (1) is '1 = 2 (Re = 10.2). 
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FIGURE 5. Dimensionless terminal radius Rj = idj from photographs of ethylene glycol jets 

( K  = 5 x S m-'; 1.64 < Re < 10.2), showing that di scales with r*. 

which may be seen to be rather long, with a width decreasing very slowly though 
monotonically in the downstream direction. Although it is difficult to characterize its 
shrinking diameter through a single number dj, we have done so approximately by 
measuring its smallest value in each photograph, with errors which may be as high as 
30%. The resulting values are plotted in figure 5 as the ratio 1.8dj/r*, where 

r* = (Qcc,/K)+. (2  4 
It is noteworthy that di/r* is practically independent of 7, with a value scattered 
around 0.4 for all cases, which justifies the scaling law 

dj - r*. (2  b) 
This finding is in marked contrast to the alternative scaling (Fernindez de la Mora 
et al. 1990) 

(2 c> 

found to fit approximately the data published by Jones & Thong (1971), Cloupeau & 

dj - R* = (pQ2/y) i ,  
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Prunet-Foch (1989) and Gomez & Tang (1991a, b, 1993). These data, however, 
correspond to substantially smaller liquid conductivities and much larger jet Reynolds 
numbers than those of figure 5.  The possible ranges of validity of (2b)  and (2c) will be 
discussed in 543.2.3 and 3.3. 

3. Preliminary theoretical notions 
3.1. High-conductivity asymptote and irrelevance of electrostatic variables 

The observed limiting behaviour where I becomes independent of electrostatic 
parameters can be seen experimentally to arise only at relatively large electrical 
conductivities K (Cloupeau & Prunet-Foch 1989, figure 8). But an increasing K is 
known to give rise to a decreasing jet diameter dj, as shown among others by Smith 
(1986), and as implied also by ( 2 4  b). The limiting behaviour under discussion must 
therefore be associated with the asymptote d,/d,+O, where the jet diameter is 
exceedingly small at the scale of the diameter of the capillary tube. If the disparity 
between these two dimensions is sufficiently large, an intermediate region 
d, -4 r < dj for the polar distance r from the cone apex must exist. In this domain, 
r /d ,  + O  and r/di+ 00 simultaneously, so that d, and dj both become irrelevant 
quantities. By realizing that this intermediate region is actually describable by Taylor's 
theory, V may also be shown to be an irrelevant variable. This identification could be 
established from pure theoretical arguments, but shall be based here mostly on 
observations. 

When looking at the meniscus of figure 1 (b) at the scale d, of the capillary, one sees 
first a surface with a curvature of the order of 4' which heads towards the axis, and 
nearly crosses it with a finite angle a. But the crossing does not take place, because, at 
a distance from the axis very small compared to d,, a highly curved region appears 
where the jet begins to form. The intermediate region d, + r < dj near the virtual tip 
where the meniscus nearly intersects the axis is therefore nothing but a Taylor cone of 
semi-angle a. Conversely, an electrified meniscus may have a well-defined conical shape 
only in the limit when d,/d, 4 1. This is all too evident from a number of published 
photographs (including some of Zeleny, Taylor, Hayati et al., Gomez & Tang, etc.) for 
moderately conducting liquids, where, rather than a cone, one sees a concave-convex 
surface with an inflexion point in its generatrix. Even in figure 1, with d,/dj - 100, the 
length disparity is not quite large enough for a conical region to be sharply and 
indubitably recognizable. However, the photographs of Fernandez de la Mora (1 992) 
for substantially more-conducting liquids (with invisible submicron jets) show liquid 
tips which look precisely conical to the eye. 

Let us now consider a situation with dj /d ,  < 1, with a wide and sharply conical 
intermediate region. This region is electrohydrostatic because the electric and velocity 
fields associated with the finite charge and mass flow through the jet both decay as 
(dj/r)' and are therefore negligible. The corresponding electric field is therefore as given 
by Taylor (1964) from the condition that the normal capillary and electrostatic tensions 
balance each other exactly at the interface. For a cone of semi-angle a (figure 6), the 
former is given by y/(rtana). Because the electrostatic tension is iq ,E; ,  the 
equilibrating electric field normal to the cone must then be 

E~ = (2y/c, tan a); r-i. ( 3 )  
E, in ( 3 )  depends neither on I/ nor on d,, so that the field near the apex is insensitive 
to the circumstances of the electrodes creating it. The jet structure would be determined 
by solving a certain electrohydrodynamic problem which matches upstream with (3), 
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FIGURE 6. Sketch of the meniscus and the variables used for its description. 
Do = outer domain (gas); Dt = inner domain (liquid); Z = interface. 

and does not, therefore, receive independent information about Vor d,. Neither the jet 
structure nor the current it carries may then depend directly on the external 
electrostatic parameters, as observed. 

In conclusion, the high-conductivity limit in which the jet is extremely thin at the 
scale of d, leads to a considerable simplification of the description of an electrified 
liquid cone. Then (and only then) the meniscus develops a clearly defined intermediate 
conical region between the needle and the jet. As a result, the jet structure and current 
become independent of electrostatic parameters. When d, - 1 mm, this high- 
conductivity asymptote corresponds roughly to jet diameters below 10 pm. This range 
is the one where understanding electrified cone jets would be of greatest practical value, 
since no known alternative atomizer can produce monodisperse droplets smaller than 
a few microns. 

3.2. Dynamical perturbations to Taylor’s theory 
The following theoretical considerations are intended to provide a preliminary 
explanation of the observed I N Qa law on the basis of Taylor’s theory. Some of the 
available evidence pointing to the consistency of his explanation of the cone has been 
discussed by Fernindes de la Mora (1992) at the purely hydrostatic level. Our plan here 
is to introduce dynamical effects as small changes in Taylor’s structure, and to identify 
the conditions under which these perturbations cease to be negligible. The exercise 
introduces a characteristic distance A from the cone apex and a characteristic current 
I*,  which are, respectively, closely related to the observed jet radius and the current. 
The fact that the breakdown condition for Taylor’s theory captures the two most 
fundamental features of the dynamical problem associated to the jet structure suggests 
strongly that his picture is fundamentally sound. 

3.2.1. The eflect of$uid motion on the distribution of charge at the interface 
The charge density t~ (C mP2) at the surface of a conductor in equilibrium is such that 

the external electric field is normal to the interface and the internal field is null, Let us 
denote by re the value of (r in this electrostatic limit. If the conductor is a fluid and its 
surface is set into motion, the flow transports the surface charge, shifting its value from 
re. As a result, the electric field inside the liquid ceases to be zero, and electrical 
currents set up through it, in an attempt to restore electrostatic equilibrium. In the case 
of a conical meniscus carrying a net mass flow, the fluid speed is small and the 
conducting section large far upstream from the apex, where the perturbation on ge is 
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slight, and the small resulting currents lead to negligible potential drops. However, the 
situation becomes far less favourable in the vicinity of the apex, where liquid speeds are 
rather large and the section available for conduction small. As a result, one may expect 
that the fluid motion will not perturb appreciably Taylor's equilibrium except in a 
relatively small region near the apex. Our objective here is to determine the dimensions 
of this region. 

Let us for the moment assume that Taylor's model for the conical meniscus is an 
appropriate approximation to the real problem, so that = eo E,, is given from (3) by 

ve = pr-i; p2 = 2yeo/tana, (4) 
where a is the cone semi-angle. In order to describe the shift of CT away from ve 
resulting from convection of the interface, one must first characterize the transport of 
charge down the meniscus, which proceeds by convection and conduction at the 
charged interface C, and only by conduction through the bulk. The surface current 
density j s  is modelled here as 

j ,  = (us +fi EI) CT at C, (5 )  
where u is the fluid velocity and us its value at the interface;fi is the electrical mobility 
of the surface ions, and the tangential component of the electric field El inside the 
liquid. Similarly, the bulk current density j ,  is taken for a fluid with electrical ._ 

conductivity K to be given by 
j,, = KE.  

The electric fields in the domains Di and Do inside and outside the liquid, respectively, 
satisfy 

The boundary conditions at the interface C require that the potential be continuous, 
and also yield the surface charge density CT. Thus 

E'" = -U@; V2@ = 0 in Dk (k = i or 0). (7) 

#=$"; ~ = e , [ E " - e E " ] - n  at C, ( 8 4  b) 

where n is the unit vector normal to the interface directed away from the liquid. 

density striking the interface from inside be incorporated into the surface current : 
The condition of charge conservation at Z: requires that the conduction current 

Us% = j , - n  at C. (9 4 
For the case of an axisymmetric geometry characterized by a distance R(z) to 
the axis, where z is the axial variable, defining the path length along the surface 
ds = dz { 1 + (dR/dz)2}k, (9 a) turns into the following conservation equation for the 
surface current I ,  : 

d l  
ds Z, = ~ITRU,  CT, 2 = ~ T c R K E ~ ,  (9b7 c) 

where u, = ds/dt is the fluid speed at 2 along the generatrix, and the termf, E, from 
( 5 )  has been provisionally neglected in comparison to u, (see 96.2). Equation (9c) 
expresses how the surface or convection current increases at the expense of the 
conduction current density. A useful alternative form for (9c)  may be obtained by 
writing E i  in terms of E i  and I ,  by means of (8b) and (9b) .  Introducing further the 
equilibrium current I, ,  defined as the convection current I ,  corresponding to the 
equilibrium charge density ue = eo E i ,  (9 c) becomes 

dZ ds 
t , S  = -(Z8--Ze), with d t  = -; mO/K = t e ;  Z, = 2.nRu,e0E~, (9d-g) 

dt US 
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where t, is the electrical relaxation time, and t is the convective time. Equation (9 d )  is 
a prototypical linear relaxation equation with two limiting behaviours. In the 
equilibrium limit when t, d In IJdt 4 1, the solution I, = I, is governed entirely by local 
properties at the interface. In the opposite limit, t,dlnI,/dt 9 1, I, is incapable of 
tracking the changes of I,, so that its value depends on the full past history of I,. 
In what follows, we shall call 'charge relaxation phenomena' those arising when 
t ,  d In Z,/dt is not small. A measure of their importance is given by the ratio between 
t ,  and the characteristic flow time. 

Let us now consider the implications of (9) in the near-equilibrium region where the 
surface is a cone of angle a and E i  is given to a first approximation by (3) .  In order 
to make further progress, some knowledge of the velocity field is required. As a first 
and very tentative approach, we take it to be the spherically symmetric 'sink': 

. r - t c o .  (10) 
Q 

2 4  1 - cos a) ' 
u = Ue,; U = - a / r 2 ;  a = 

This velocity field is in fact the average convective disturbance of the interface for a 
given flow rate Q. In reality, the presence of electrical shear stresses may produce 
surface flows larger than a/r2,  so that (10) represents the minimal possible convective 
disturbance. The description (10) will be shown in $6.3 to hold at small jet Reynolds 
numbers, though it evidently fails in the apex region where the cone turns into a jet. 

Accepting (10) provisionally, the flow time t in (9e) is immediately found as r3/3a. 
The condition for the onset of charge relaxation phenomena is therefore that 
3at,/r3 - 1, which introduces the characteristic electrical relaxation length h = (3at,)i: 

A 3  = 3Qte . { A  = 1.187(Qte>i for a = aT = 49.29'). ( l la ,  b) 
2n(l -cosa)' 

Except for its dependence on a through a factor close to unity, h coincides with the 
length r* introduced in (2a) as the characteristic measure of the jet diameter observed 
experimentally. 

In conclusion, when Taylor's model is complemented with a sink flow, as the fluid 
approaches the cone apex and Y becomes small, the velocity increases according to (10) 
and relaxation phenomena set in at a distance h from the apex. The coincidence 
between the jet scaling length r* and the electrical relaxation length h also strongly 
suggests that the formation mechanism for the jet is associated with charge relaxation 
phenomena. 

3.2.2. The characteristic convection current 

surface charge tends to I ,  = 2nr sin 01 us v,, given asymptotically by 
When r >> r* and v+v,, the surface current I, associated to the convection of 

2nsin2a yQK 
1 * 2  = . [I" = 2.44(yKQ/c)i for a = a,], (126, c) 

~ ( I - c o s ~ )  6 ' 

indicating that, at the point where charge relaxation becomes non-negligible, the 
convected current I, is a quantity of the order of (yKQ/e)i. It is noteworthy that I* 
scales with Qi, as found experimentally for the spray current in $2. The more detailed 
measurements of 54 will show further that the spray current scales approximately as 
(yKQ/e)i, with a proportionality factor which depends on e. The fact that the 
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breakdown conditions for Taylor’s static theory capture the essential features of the 
two fundamental dynamic quantities of this problem strongly suggests that his model 
contains the essence of the statics of the problem, and remains valid nearly down to the 
jet development region. 

3.2.3. Jet diameter and fluid inertia 
The experiments discussed in $2.3 showed that the jet diameter dj may scale either 

with the electrical relaxation length r* or alternatively with the length R* of (2c), 
depending on the circumstances. The characteristic quantity R* is actually of the order 
of the value of r at which Taylor’s theory breaks down as a result of fluid inertia. 
Indeed, the balance between the capillary and the electrostatic tensions fails as soon as 
the dynamic pressure &u2 becomes comparable with y / r .  For a given liquid flow rate 
Q, this happens when r is a few times smaller than R*, as in (2c). In other words, when 
inertia is significant, a conical meniscus cannot remain in equilibrium in the region 
r < R*, and must accordingly adopt a different geometry, presumably a jet. It thus 
seems that the formation of the jet may be determined either by inertia or by charge 
relaxation, depending on which of these two phenomena acts first as the cone apex is 
approached. Interestingly enough, the key ratio R*/r* is simply related to the 
dimensionless flow rate introduced in (1) : 

R*/r* = 7;. (13) 

Accordingly, when q is smaller than unity inertia has no chance of becoming relevant, 
so that dj N r*. In the opposite limit q + 1 one could expect the alternative behaviour 
dj - R*. However, it is conceivable that for flows dominated by viscosity inertia might 
still remain irrelevant at relatively large values of 7. In any case, if the flow in the cone 
were spherically symmetric as in (lo), it would be irrotational, and viscous effects 
would drop entirely out of the picture. As a result, even for a relatively small jet 
Reynolds number Re (defined here based on its final diameter dj near the break-up 
region, and on the fluid density p and coefficient of viscosity p) 

Re = 4/?2/(~ dj~cc), (14) 

it is unlikely that inertia will remain irrelevant at large enough q. In conclusion, it seems 
reasonable to adopt (2b) in the limit of either sufficiently small Reynolds numbers or 
small enough 7, while ( 2 c )  would probably hold at large Re and large q. With our 
present limited knowledge of this problem it is not possible to establish how large 
must be for a given Re for the transition between (2b) and (2c) to occur. Nonetheless, 
the present work is concerned mostly with the high-conductivity limit in which the jet 
diameter is very small, which tends to coincide with the Re < 1 limit. Furthermore, 
values of 7 will always be smaller than 10, so that (2b) is most likely to apply, as shown 
in figure 5 for q < 2. Work in progress by Rosell-Llompart & Fernandez de la Mora 
(1994) shows for Re < 1 that (2b) is a fair approximation for 7 < 8, though not as good 
for q > 2 as for 7 < 2. Because in the high-conductivity limit dj is only a few times 
smaller than r*, one may write an explicit expression for Re in terms of only Q and fluid 
properties. Alternatively, we define another Reynolds number Re* based on r*, which 
differs from Re only by a factor near three, 

where v = p / p  is the kinematic viscosity of the liquid. Re* has the advantage over Re 
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of involving only externally supplied parameters. Its value for the data of figure 5 is in 
the interval 0.506 d Re* < 3.15. 

3.3. Dimensionless representation 
For a problem where the relevant externally controlled physical magnitudes are Q, y, 
p, E ,  eO, ,u and K, the current I and the jet diameter dj must have the form 

where is I made dimensionless with the characteristic current y(s,/p);, while q and 
Re* have been defined in (1) and (15). The variable 7 can alsol be interpreted as the 
characteristic current (yQK/c);  made dimensionless with y(e,/p)'. q2 is also the ratio of 
the flow time formed by the volume pQz/y  divided by Q (a sort of transient time over 
a characteristic inertial length R*) and the electrical relaxation time. 

In the limit of sufficiently small Re* and of moderate values of q, where inertia 
becomes irrelevant, p would drop out of the picture and one could write 

In the Appendix it is shown that the quantity 

measures the radial variations in the axial velocity profile of the jet. These are due to 
electrical shear stresses which tend to make the liquid velocity larger at the surface than 
at the core, while viscosity has the opposite tendency, towards making the axial 
velocity radially uniform. 

In conclusion, (16a) shows that the ratio between I and the current I*  of (12) is in 
principle a function of the parameters e, 7 and Re*, which degenerates into a function, 
(17a), of only 2 and E in the low-Reynolds-number limit (provided 7 is not too large). 
A similar statement may be made with respect to d,/r*. It is not obvious a priori why 
the viscous parameter Z would be irrelevant. 

4. Experimental 
Section 3.2 has identified K and Q as probably the most important parameters 

entering in this problem. We therefore proceed to study experimentally their effect on 
I for several liquids. 

4.1. System and measurement routine 
The experimental set-up is fairly standard, as sketched in figure 7. The meniscus is held 
at the end of a stainless steel capillary needle connected to a high-voltage power supply 
at a positive potential V. Facing the needle perpendicularly is a flat ground electrode, 
kept in most experiments at 9 mm from the end of the needle. Two needles were used, 
with outer and inner diameters of 1.07 mm and 0.81 mm, and 0.41 mm and 0.24 mm, 
respectively. Both have an approximately conically tapered end, finishing relatively 
sharply at the inner diameter. The smallest one was used for all experiments, except for 
those with 1-octanol and those reported in relation to figures 1 and 2. The capillary 
tube is enclosed in a sealed cylindrical metallic chamber in order to be able to control 
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FIGURE 7. Sketch of the experimental setup. 
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the surrounding atmosphere, always kept near laboratory conditions of temperature 
and pressure. This feature was essential for the experiments with water, whose large 
surface tension requires relatively large electric fields for a cone to form. As a result, 
discharges in air tend to appear at voltages smaller than those necessary for the 
meniscus to become conical, though this problem may be avoided in gases with a 
higher breakdown potential such as CO, (Zeleny 1915), SF, (Smith 1986), etc. All tests 
with water were accordingly carried out in CO,. Water is also by far the most volatile 
of all the solvents used. Accordingly, had the amount of material evaporating from the 
meniscus not been negligible in relation to the total flow rate Q, the measured volume 
of liquid fed to the needle would have differed from that ejected through the jet. In 
order to reduce this potential problem, evaporation was minimized by using the 
smallest needle diameter. Its negligible importance was verified by observing that the 
reduction of the evaporation rate brought about by saturating the chamber with water 
vapour did not change the Z(Q) curves. The current was measured by placing an 
electrometer between the electrode collecting the spray and ground. 

The liquid was fed into the metal capillary by a narrow insulating tube connected to 
a reservoir (typically a 5 cm3 disposable syringe). Its flow rate Q was controlled by 
imposing a pressure difference AP across the feeding line. In order to keep Q strictly 
linear in AP, AP was substantially larger than the pressure jump between the 
atmosphere in the chamber and the liquid inside the meniscus (of the order of 4y/d,, 
where d, is the inner diameter of the needle). Also, the meniscus was kept at the same 
height as the free surface of the sample liquid. AP was measured with a mercury or an 
oil manometer as the difference in pressures between the gas pushing the liquid and that 
in the spray chamber. The actual flow rate was inferred in some of the experiments 
from the linear relation between Q and AP, after determining the ratio Q / A P  at a 
relatively large flow rate. Q was found by introducing a bubble into the liquid line and 
measuring its velocity at a given AP. The line consisted most often of a Teflon tube with 
an inner diameter of 0.3 mm and lengths ranging from several metres down to some 
10 cm. For the smaller flow rates, fused silica tubes typically shorter than 10 cm and 
with inner diameters between 50 pm and 75 pm were used instead. In some cases, the 
full relation Q 2)s. AP was measured and confirmed to be linear. This method of flow 
measurement was required because of the very small values of Q characteristic of such 
conductive liquid cones, typically in the range of lop6 cm3 s-l, and smaller than 

cm3 s-l in one case. The approach leads to extremely stable cones, but is not free 
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1-Octanol Water BA EG TEG Formamide 

y (dyn ~m-l) 26.06 72.58 39.96 48.4 45.2 58.35 
t' 10.34 80.1 13.1 38.66 23.69 111.0 
P (CP) 10.64* 1.0019 I.%* 21.0 49.0 3.164 
p (g cm-? 0.8255 0.9982 1.04927* 1.1 1 1.123 1.13 

TABLE 1. Macroscopic properties of the pure solvents used in this work at  20 "C (* at 15 "C) (Riddick 
et al. 1986). y = surface tension coefficient, B = dielectric constant, p = viscosity coefficient and 
p = density. BA = benzyl alcohol; EG = ethylene glycol; TEG = triethylene glycol. 

from problems, as the silica line is not completely inert with all solutions, particularly 
with saline water. As a result, partial clogging, or variations of flow resistance with time 
were not uncommon, and might have resulted in experimental errors. The Teflon tube 
generated highly reproducible results, but the smallest diameter of 0.3 mm found 
commercially was too wide to be suitable at the smallest flow rates or with the least- 
viscous substances. Extending this work to conductivities in the range of 10 or 
100 S m-l (and flow rates as small as lop9 cm3 s-l) promises to be rewarding, but will 
surely present some serious experimental challenges. 

The spray chamber was provided with two glass windows for monitoring visually the 
meniscus and associated spray, to ensure that a stable cone-jet regime (Cloupeau & 
Prunet-Foch 1989) was present. This verification was carried out occasionally under 
continuous light through an optical microscope, generally just before and after 
measuring each I@) curve.t Any change of operating conditions was easily detected 
through jumps or instabilities in the measured current. It is also important to be sure 
that the current is transmitted mostly by the jet and not by a corona discharge. This 
is easily confirmed within our regime of operation by the independence of the spray 
current of voltage, as corona discharges exhibit a marked dependence between these 
two variables. Such symptoms arose occasionally for the liquids with the highest 
surface tensions, and appeared even with 1 -octanol at the largest conductivities tried 
(10% H,SO,). In such cases, any observable effect of a gaseous discharge on total 
current was eliminated by running the spray in CO, rather than in air. 

In order to achieve the highest reproducibility and stability it is essential to eliminate 
gas bubbles from the liquid samples (in our case by prior immersion in an ultrasonic 
bath), and also to keep the needle connecting the disposable syringe reservoir with the 
liquid line free from bubbles. Because the liquid viscosities and electrical conductivities 
depend substantially on temperature, high-precision results are only attainable by 
carrying out the measurements in a thermal bath. This study, however, was done at 
room temperature, monitored with a thermometer. The calibration Q(AP)  and the 
measurement of the conductivity were done immediately after the end of each 
experiment. The temperature never varied by more than 0.5 "C through the data 
collection period, so that no corrections were introduced to account for this effect. 

Liquids. Equation (1 6 a) suggests that the fundamental physical variables governing 
the spray current are t', p, p, y,  Q and K. The role of y is relatively well known (Smith 
1986), so that this parameter was ignored in the selection of fluids. In order to operate 
in the high-conductivity regime where electrostatic parameters are irrelevant, it is 
important that K be relatively large. This is most readily (though not exclusively) 
achieved with relatively polar solvents, which in this study cover the range 10 < e < 110. 

t In order to avoid increasing the liquid temperature above ambient conditions, the illumination 
lamp was on only as briefly as possible. 
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Concentration 

Solution (mol I-') K (S m-l) '7, 
EG- 1 0.96 0.24 0.0737 
EG-2 0.23 6.26 x lo-* 0.115 
EG-3 4.2 x 1.69 x 0.178 
EG-4 1.0 x 5.0 x 10-4 0.577 
EG-5 1.0 x 10-4 5.4 x 10-5 1.21 
FM-1 0.147 0.27 0.64 
FM-2 1.47 x 5.49 x 1.088 
FM-3 1.47 x 3.16 x 1.309 
FM-4 - 2.84 x lo-* 1.35 
w-1 9.98 x 0.83 1.646 
w-2 9.98 x 10-3 9.26 x 3.42 
w-3  9.98 x 10-4 2.13 x 5.58 
w-4  9.98 x 10-5 2.1 5 x 10-3 11.98 

TEG-1 1 .o 4.5 x 0.45 
TEG-2 3.87 x 4.38 x lod3 0.0977 
1-801-1 0.047 1.16 x 0.122 
1-801-2 0.13 5.67 x 10-3 0.196 
1-801-3 0.38 2.3 x 0.332 

TABLE 2. Conductivity K and molar concentration (mol of solute per 1 of solvent) for the various 
solutions for which I(Q) curves have been measured: EG = ethylene glycol; TEG = triethylene 
glycol; FM = formamide; W = water; 1-801 = 1-octanol. Also one solution of benzyl alcohol 0.17N 
having an electrical conductivity K of 0.0079 S rn-l was studied. All solutions used LiCl as the salt, 
except those with 1-octanol, which were seeded with H,SO,. (*) as purchased. 

* 

(a) N (LiCl-EG) 0.966 0.23 8.9 x 4.2 x 
lOO*Ay/y 2.3 1.16 0.58 0.58 

(b) N (LiC1-Water) 1.36 1.87 2.67 3.82 
lOO*Ay/y 2.26 3.46 5.121 7.6 

TABLE 3. Effect of solute concentration N (mol I-' of solvent) on y :  (a) measured data for LiCl in 
ethylene glycol; (b) LiCl in water, Weast (1980). 

Except for water, an important selection criterion was that the liquid vapour 
pressure be relatively small. The solutions used involved H,SO, in 1-octanol and LiCl 
in benzyl alcohol, ethylene glycol, triethylene glycol, formamide and water. Except for 
water, all the solvents were used as purchased (HPLC grade when available). 
Formamide had a substantial electrical conductivity (0.028 S m-l as purchased), and 
was not purified further. As a result, the nature and concentration of the ions is 
unknown for the least-conducting sample of this solvent (FM-4). Water was distilled 
and de-ionized. The literature values of the fundamental properties (y ,  e, p, p)  of these 
pure solvents are shown in table 1 (Riddick & Bunger & Sakano 1986). 

The solutions for which data are reported, are characterized in table 2 with respect 
to solute concentrations and conductivities. Given the relatively high polarity of most 
of these liquids, their conductivities could be varied over a considerable range. 
Absolute values of the surface tension coefficients were not measured for the pure 
substances. In the case of ethylene glycol, the value of y relative to that of the pure 
solvent was measured for the solutions, with results shown in table 3 (y increases with 
salt concentration). y was found to change by at most 2.3% at the highest 
concentration of 0.966 moles of LiCl per litre of solvent. The effect is even smaller for 
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Formamide 
Water + LiCl Water + LiCl + LiNO, 

N E (18 "C) e (25 "C) E (25 "C) 

0.0 81 110 
0.05 79 
0.2 76.5 - 

0.31 73.2 - 

0.5 71.5 71.2 97 
0.62 68.4 - 

0.93 64 - 

1 .oo 66.5 64.2 88 
1.50 57 
2.00 56.8 51 73 
3 .OO 49.3 - 

4.00 50 
5.00 39.1 - 

8.00 39 
12.00 35 

- 

- - 
- 

- 

- 

- 

- - 

- 

- - 

- 

- - 

- - 

TABLE 4. Dielectric constant E versus solute concentration, from Akhadov (1981). 
N = moles of solute per litre of solvent. 

water solutions, where the published relative change in y is 2.26% for a 1.36 molar 
solution of LiCl (Weast 1980). Accordingly, literature values for the pure substances 
were used for y in the data reduction, and an identical practice was followed regarding 
p. The same simplification would lead to larger errors if practised for the dielectric 
constant E ,  as shown in table 4 for water and formamide, where 1 molar solutions of 
LiCl are seen to produce changes in E larger than 10%. Unfortunately we are not 
equipped to measure E in conducting liquids, so that the data reduction has also been 
based on the pure fluid value of E ,  which leads to unknown and perhaps non-negligible 
errors for the most conductive solutions in all the solvents used. In the case of water 
(also for formamide to a lesser degree), the variation of e in the range of conductivities 
covered was only a few percent. This favourable circumstance follows from the small 
viscosity and high dielectric constant of these solvents, for which rather high 
conductivities result even from the relatively dilute solutions for which e is close to the 
value at infinite dilution. 

4.2. Experimental results 
To give an idea of the range of variation of the physical magnitudes involved in this 
study, figure 8 shows raw data of measured currents us. flow rates for many of the 
substances and conductivities studied. Notice, however, that the data shown in each 
curve do not necessarily cover the full range of flow rates at which the cone jet is stable. 
Finding the minimum flow rate and current is exceedingly time consuming for highly 
conducting solutions. The highest flow rate is more readily determined. But it depends 
on the electrode configuration, and has therefore no universal significance. All data 
collected are shown in figure 8 except for three of the curves for l-octanol shown in 
figure 2, where the characterization of conductivities and temperatures was not as 
careful as with the other substances. All of these data may be accurately described by 
power laws I -  Qn with an exponent n which departs slightly from f, more in some 
cases than in others. The points corresponding to water deserve special attention, 
because their data reduction is not clouded by indeterminacies in the value of e. The 
corresponding Z us. (yQK/e); curves are shown in figure 9, where all the data points for 
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FIGURE 9. Spray current I versus (QKy/e)h for water solutions. The same data are shown in the 
inset in dimensionless coordinates 6, 7 (equations (16a) and (1)). 
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FIGURE 10. Dimensionless spray current 5 versus 7 (equations (16a) and (I)) for a 
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FIGURE 11. Slopef= d</dy of the lines of figure 10 us. dielectric constant B for the pure solvents. 

conductivities that vary 400-fold collapse into a single and approximately linear curve. 
The inset shows the same data in the dimensionless form [(r) suggested by (16a). 
Interestingly enough, Re* appears to be an irrelevant variable. 

All the points from figure 8 are re-plotted in figure 10, also in the form [(r), though 
the value of E used for the reduction is that corresponding to the pure solvent. The data 
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FIGURE 12. Dimensionless spray current [ divided by ,f DS. 9 (equations (16a) and (1)). 

for each substance collapse approximately onto a single straight line going through the 
origin, though with a scatter which, for some species, becomes relatively important at 
the smallest currents. The curves associated with the different substances spread into 
a fan of distinct lines, with slopes d(/dq increasing from l-octanol to water and 
formamide, in order of increasing values of the dielectric constant. The slope 
f ( e )  = d(/dy obtained from linear regression of the data for each solvent is plotted in 
figure 11 as a function of e (pure solvent value). The points may be joined through a 
relatively continuous curve characterized by a plateau value near 18 for e > 40, and a 
rapid decrease inf(e) for smaller dielectric constants. Figure 12 plots [ normalized with 
f(e) as a function of y, with most of the points now falling reasonably close to the 
diagonal line [/f= 7.  One is therefore led to the approximate experimental result 

[ = f ( e )  7 or I = ,f(c) (yKQ/e)f. 

4.3. Discussion 
A first remarkable feature of (18) is the conspicuous absence of the viscosity coefficient. 
The current simply scales with the quantity I* of (12) through an s-dependent factor. 

In addition, the data of figures 10 to 12 contain the independent and rather 
interesting result that ymin  is of order unity for all the substances studied. A detailed 
experimental investigation of the scaling laws for the minimum flow rate Qmi, at which 
Taylor cones are stable is still pending, as is a theory accounting for the existence of 
this lower stability boundary.? Nonetheless, it seems reasonable at this stage to accept 
provisionally the limited available empirical evidence that qmZt1 - 1, in order to simplify 
further the interpretation of (18). 

t For the least-conducting solutions of water and formamide studied, we find that this lower 
boundary corresponds quite closely to the maximum possible ratio of I / Q  when the emitted jet 
contains only ions of one polarity, the counter-ions having precipitated entirely in the metal capillary. 
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Notice that the variables Re* and Z may be rewritten in terms of 7 and the quantity 
'7, as 

l7,, = (y2pte)$/,u; Re* = ~ Z f l , ~ ;  Z = 7-:I7,, (1 9 a-c) 

where 17, depends only on the liquid properties and not on the flow rate. Accordingly, 
if 7 is typically larger than one, Z will be typically smaller than I$ and Re* at any flow 
rate. Therefore, Re* and also Z become irrelevant quantities in the low-Reynolds- 
number limit. Values of '7, are shown in table 2 for all the solutions used in this work. 
They are at most near unity except for the case of aqueous solutions. The result (18) 
could accordingly be understood as a small-I7, limit where both Re* and Z become 
irrelevant and (1 7) degenerates to 

approximately as observed. The puzzling thing is that (20a) also holds for the water 
solutions, which are definitively not in the low-Reynolds-number range. 

The noticeable departure of some of the data in figure 12 from the diagonal 
(particularly at smaller values of 7) may be due in part to errors in the measurement 
of the very small flow rates involved (as discussed earlier), and also to possible 
variations of E away from the pure fluid value. However, much of this spread is not due 
to noise in the data, but to systematic departures from the scaling law I = f ( e )  (yQK/e)i. 
This can be seen in figure 8 from the raw data, some of whose logarithmic slopes 
dlnI/dlnQ differ from i. In spite of these inaccuracies, the predictive power of 
(18b) is undeniable for all the substances tried and for a range of conductivities 
and flow rates spanning some four orders of magnitude. Of course, much remains 
to be done before (18) might be considered solidly verified. Wide as it is, the range 
0.83 > K > 5 x lop5 S m-l of conductivities explored is still a narrow fraction of the 
interval bound between liquid-metal conductivities and those of semiconducting 
liquids, for which these results presumably hold. Also, only six substances have been 
studied, and none with a dielectric constant smaller than 10. The characterization of 
fie) is therefore incomplete. Figure 11 should also be taken as provisional until the 
values for many more solvents are added to it. 

5. Further theoretical considerations 
5.1. FarJield r 9 r* 

By incorporating into Taylor's theory the perturbations brought about by fluid 
motion, we have found in gg3.2.1 and 3.2.2 the magnitude of the characteristic length 
h at which relaxation effects set in, as well as the characteristic value of the current 
associated with surface convection. The same formulation can be used in the 
equilibrium region r +- r* to infer the asymptotic form of the electric field and the 
electrical shear stresses. Knowledge of these quantities will make it possible to judge 
the self-consistency of the various hypotheses made (the sink-flow assumption, in 
particular). 

Let us consider again the near-equilibrium portion of the meniscus, shaped as a cone 
of angle a, with E i  given to a first approximation by ( 3 ) .  Equation (9a)  may be written 
for this case in spherical polar coordinates r,  8 as 

(21) 
a 
- (rcu,)  = rKEi at 8 = CL, 
ar 
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where we maintain the sink-flow description (10) for the fluid velocity u. We introduce 
the following dimensionless form of E: at 0 = a, which tends to unity at large r (p was 
defined in (4)): 

and also the dimensionless internal field and polar radius, Y and x, respectively: 
F = eo E,"ri /P at 0 = a, (22) 

Y = eeo E ~ A ; / P  at 8 = a ;  

x = r /h .  

After making use of (8b), (10) and (22)-(24), (21) takes the simple form 

= y, 1 
while the surface charge is given by 

c = a,(F- Y x ~ ) .  (26) 
Accordingly, the perturbation on c due to the motion is negligible provided that F 
remains close to 1 and Y much smaller than x-i. This is what happens in the far field 
x % 1, where Y may be obtained from (25) under the assumption that F = 1 and that 
Y = 0 on its left-hand side. This leads to 

2Y+xf (x + 1). (27) 

Equation (27) is consistent with the assumptions made (slight departures from Taylor's 
results) provided that x3 is a large quantity. This is assured when r is a few times larger 
than A, which confirms our more qualitative result (1 1). In physical variables, (27) 
reads 

3Q(2ys0/tana)i -? 
E;+ r 2 at 8 = a  ( r  + A). 

4xK( 1 - cos a) 

The corresponding electrical potential within the liquid is accordingly given by the 
Legendre function P of order -$ (or, equivalently, $) which is regular at the axis of 
symmetry inside the cone. But because its associated field decays too fast to be able to 
carry a current, # must be complemented by a radial conductive contribution 
proportional to I / r ,  which dominates the field for r 9 A :  

It is therefore clear that the current is carried entirely by conduction in the hydrostatic 
region x + 1, even though the potential variations driving it are produced by 
convection in the apex region. Further downstream, relaxation phenomena arising in 
the region x - 1 drive a fraction of this flow of charge (of the order of (yQK/s)i) 
towards the surface, converting it into the convection current. 

5.2. A model for the convection current in the limit s + 1 
The case of liquids with a high dielectric constant produces considerable simplifications 
in the analysis because q5' and the shape of the meniscus differ then by quantities of the 
order of I / E  from those when no currents flow through the cone. As a result, the 
meniscus remains conical and F, defined in (22), stays near unity through much of the 
relaxation region x - 1. 
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The limit E % 1 is often encountered in practice, being inescapable for the high- 
conductivity conditions considered in the present paper. Indeed, making highly 
conductive electrolytes requires that dissolved species be dissociated into small ions, 
but because dissociation energies are typically much higher than thermal energies, this 
process is impossible at room temperature unless the solvent is sufficiently polar to 
provide the needed electrical screening. The associated problem is simplified 
considerably for the following reasons : 

(i) According to (8b), changes of order 1 / ~  in EL lead to changes of order unity in 
the surface charge CT, and thus in the surface current Zs. Consequently, IJ~~ may be 
at most of order l/e, in which case equation (8a) implies that, to lowest order in 
l / ~ ,  4'' = 0 at 2. The meniscus surface is therefore nearly equipotential, even in the 
presence of substantial internal currents. 

(ii) If Ei is of order 1/e, then the normal electrical stress T-n on the interface, given 
by 

T - n  = feo[E0,2-e6E~-(1 - E ) E ~  at E, (30 4 

Ten = ~ ~ ~ E ~ ~ [ l + 0 ( 1 / ~ ) ] .  (30b) 

remains unmodified to lowest order from the equipotential value, even when currents 
flow inside the cone: 

This holds true even if the charge density cr undergoes a substantial relative shift with 
respect to its electrostatic value ue. 

(iii) Accordingly, to lowest order in 1 / e ,  the external problem is uncoupled from the 
internal field Ei and from the surface or bulk currents. Taylor's description for the 
meniscus (a cone) and the external field (3) thus remains valid through much of the 
relaxation region x - 1.  In term of the variable F defined in (22), this implies that F is 
close to unity not only in the far field x 9 1, but also at values of x comparable to 1 
or even smaller. 

5.2.1. Model of an infinitely thin jet 

Let us make the arbitrary (though instructive) assumption that the jet radius is much 
smaller than r*, so that the meniscus is conical down to its apex. As a result, when 
e 9 1, !P may be obtained by solving (25) with F = 1, yielding 

Y = - xi(x) + x-t ; (31) 

i(x) = - exp (x3) [ epy y-i dy. 

The convection current I&) = - 2nr sin aaU may then be written as 

ZJX) = I*i(x), (33) 

where I* was defined in (12). Because i(x) in (32) asymptotes towards T C ~  as x-0, I,  
converges to a constant as the apex is approached: 

I,(O) = z*76. (34 a) 

Z, = 4.331(yQK/e)g (a  = aT = 49.29"). (34b) 

In the case when a = aT = 49.29", (34a) yields 

The picture is therefore the following. As shown in (29), conduction is the main carrier 
of charge in the far field x % 1. Eventually, electrical relaxation phenomena arising in 
the region x - 1 convert a fraction of this flow of charge (of the order of (yQK/eF) into 
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convection current. So far these results are not restricted by the requirements that 
8 % 1 or that the jet be infinitely thin. When these two hypotheses are added, one 
reaches the additional conclusion that Z, is frozen at a value given by (34) as the cone 
tip is approached. Notice, however, that this prediction for I, is some four times smaller 
than the spray current found experimentally in the limit e >> I (f(e) = 18 according to 
figure 11, us. 4.33 in (34b)). 

5.2.2. An  upper limit for the convective current at the cone apex 
The discrepancy found between the measured spray current and Z, as given by (34b) 

could in principle be attributable to the following deficiencies of the model. First, the 
jet radius is not negligible at the scale of r*. It is some 0.2 times r* for the case of 
ethylene glycol, and it is unlikely that it will be much smaller for more polar liquids. 
Secondly, although the region of validity of Taylor’s field extends below x = 1, it does 
not quite reach x = 0 because, among other reasons, the meniscus eventually ceases to 
be equipotential (56.5). 

However, one can argue heuristically that (34b) actually yields an upper limit for the 
convective current near the apex. Indeed, I ,  and Z, (defined in (9)) increase 
monotonically as the apex is approached, and because I, is the driving force for I, in 
(9 d), a reduction in Z, will lead to a reduction in I,. However, in the presence of charge 
relaxation Z, is most probably smaller than otherwise, because relaxation tends to 
decrease E i  with respect to the purely electrostatic value. This is evident from figure 
4, where the curvature at the head of the jet is smaller than the corresponding value for 
a cone. But because T-n,  is proportional to this curvature, (30b) shows that the 
prevailing values of E i  and Z, are necessarily smaller than in Taylor’s theory. The 
actual value of I, at the virtual apex would therefore be smaller than predicted by (34b). 
The consequence is that more than three-quarters of the current at the head of the jet 
is still carried by conduction. Because the jet is long and slender (some 100 final 
diameters typically), it is very likely that this conduction current will eventually reach 
the surface, to become convection current. But this must happen in the jet and not in 
the cone. 

6. Limits of validity of the analysis 
The following basic hypotheses have been used through this study without rigorous 

justification (other more restrictive assumptions, e % 1 for instance, brought for special 
cases have already been discussed) : 

(i) Taylor’s description applies in the region far from the apex; 
(ii) charge transport is modelled by (5 )  and (6); 

(iii) the ion mobility term in ( 5 )  is small compared to the convective term; 
(iv) the flow is described by a sink at the cone apex. 
Our objective here is to assess when these assumptions are justified. 

6.1. Taylor’s theory 
As pointed out in the introduction, the paradoxical formation of liquid cones with 
angles smaller than Taylor’s may be rationalized for highly conducting liquids, and 
thus the use of (3) is in principle consistent with the limit dJd, 4 1 considered in this 
work. But, in practice, the hypothesis is questionable in a substantial fraction of our 
experimental conditions for moderately conducting liquids whose jet is as long as the 
cone. There is accordingly no rigorous justification of (3) for many of the experiments 
in which the Z -  Qi law appears nonetheless to hold. On the other hand, the results 
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Ion H+ K' Na+ Li' OH- c1- 
L( f l4  ( P I E " ) +  0.864 0.182 0.124 0.095 0.486 0.189 
10% 36.3 7.62 5.19 4.01 20.52 7.91 

TABLE 5 

E 

f (4 

ethylene 3ethylene 
Liquid 1-octanol water benzyl-OH glycol glycol formamide 

10.34 80.1 13.1 38.66 23.69 111 
7 18 8.4 17.3 12.1 18 

0.001 1 0.177 0.0015 0.009 0.0020 0.137 K f (4 Pi 
n,e 3 s 4  
-~ 

TABLE 6 

found experimentally for I and di agree with the scaling parameters I* and r* suggested 
in $3.2 on the basis of (3), lending therefore further support to Taylor's description. 

6.2. Ion mobility parameters 
The term f;. El has been ignored in relation to u , ~  in the surface current density (5) 
entering into the charge balance equations (9) and (21). It is therefore necessary that 
the characteristic value of the ratiofi E:/U be small. Using the far-field expression for 
El - I / rz ,  and (18) for I, one finds 

f i  E:/ u = f, I/(KQ> = AU/d @Id 7-l. (35) 
But, because 9 takes values typically larger than unity, 

Typical values off(€) ( f i l e )  @/co)i andf, (in m2V-ls-' from Moore 1972) for various 
ions in water at 298.15 K are shown in table 5. The effect is accordingly quite important 
for Hf and OH- in water, but represents at most a 20 % correction (qmin = 0.5) for the 
Li salts used in this work, and substantially less at flow rates well above the minimum. 
The magnitude of this effect for the other solvents (for which we do not knowf+) may 
be estimated by usingf+ +f- instead and estimating roughly the value of ( f++f - ) / f+  
as $ as in the case of LiCl in water. f + + f -  may be inferred from the measured 
conductivity and the known salt concentration no on the assumption that the salt is 
fully ionized ( f + + f -  = K/en,; e = elementary charge). The values shown in the last 
row of table 6 are all for the solvent-salt combinations of table 2 at the smallest 
concentration of salt shown for each. The electrical drift velocity of the surface ions 
thus represents at most a 20 YO correction in the worst of the cases, and is negligible for 
most of our experiments. 

6.3. Limits of validity of' the sink-Jow hypothesis 
Following (1 1) r* has been interpreted as the lengthscale at which charge relaxation 
phenomena set in only under the assumption that the fluid moves as in a spherical sink, 
which is not always true. Indeed, numerous observations are available of fluid 
circulation inside Taylor cones, where the liquid descends towards the apex along the 
cone surface, and returns towards the capillary tube along its axis (Hayati et al. 1986). 

( f ,  E: l  u),,, f ( 4  W E )  c D / d + .  (36) 
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ethylene 3ethylene 
Liquid 1-octanol water benzyl-OH glycol glycol formamide 

KFmm ( S  m-l) 2.1 x 3.1 1 x 9.87 x 4 x 4.5 x lo-' 1.68 x 

TABLE 7 

It is evident in such cases that most of the fluid motion is not associated with the sink 
flow (10) (which cannot lead to a retrograde motion along the axis). Instead, the 
circulation is generally attributed to electrical shear stresses arising at the cone surface. 
Let us now find a criterion for such a shear-induced motion to become insignificant. 

Assuming that the liquid velocity in the meniscus is given by a sink flow, the 
corresponding complete description of the radial electric field and the surface 
charge at r % r* make it straightforward to evaluate the far field of the shear stress 
rOr = 7 = E, IT, and check under what circumstances it leads to negligible effects on the 
sink flow (10). For r 9 r*, Ei  is dominated by the I / r 2  conductive contribution, while 
the surface charge CT is given by Taylor's result (4). Therefore, 

. r $ r *  
(YeoY I 1 r=-  

Krk n( 1 - cos a)  (2 tan a);' 
(37) 

In the limit when viscous forces dominate over inertia, this shear leads to a velocity 
U, - rr/,u, whose relative importance with respect to the basic sink flow U = -a/? 
may be written as 

> (38) 
U, f(2yprltan a:): 

U PErl 

where we have put I = f bKQ/e ) ; .  Alternatively, if inertia were to dominate 
over viscous forces, the shear-driven surface velocity would be given instead by 
U: - T ~ / , u ,  8 being the thickness of the thin boundary layer through which the surface 
shear would be transmitted to the bulk fluid. But, because in this case S < r ,  it follows 
that U: 4 U,, so that the ratio U J U  in (38) represents an upper bound for the relative 
importance of the shear-induced flow. This group (38) is by no means negligible when 
r is of the order of the needle diameter and 7 - 1. Using r = 1 mm, and tan a: = 1, (38) 
takes values ranging from 85.7 in water down to 3.28 in triethylene glycol, for the fluids 
used in this work. Still, the corresponding Reynolds number Re, = 7r2p/p2 may be 
written (except for an a-dependent factor close to 1) as 

Re, = @#/K, with K# = feo,uu-z(y3p/r):. 

K# is tabulated in table 7 for the solutions used in this work, taking r = 0.1 cm. Kfmm 
is smaller or, occasionally, comparable with the actual experimental conductivities. As 
a result, Re, is typically of order one or smaller in our experimental runs, so that it 
would be straightforward to calculate the correction U, to the flow. It is also clear that 
the high-Reynolds-number regime leading to vigorous circulation may also be easily 
attained, for instance, with water at conductivities of some S m-'. In any case, in 
the region of interest, where r = r* we find that 

-- 

lU7/U1T* - Zfle, (39) 
where the viscous parameter 2 was defined in (31 c) .  The criterion for the shear effects 
to be negligible, and for U to be given by the sink flow (9) is that 

Zf/€ -4 1. (40) 
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Otherwise, the analysis must be modified to incorporate shear-induced motion. 
Because,f/t < 1 and 7 is of order one or larger for all the experiments in this study, (40) 
is automatically verified when Re* is of order unity or less, as required for the jet inertia 
to be negligible in the region r - r*.  Accordingly, if Re* is small, Z is also small, and 
shear-induced motion is negligible in the relaxation region x - 1. 

6.4. Limits on the vulidity of the model used for conduction 
The conduction model (6) implicitly takes K to be uniform throughout the liquid, a 
hypothesis that becomes questionable near the surface. Indeed, the interface provides 
a reservoir of charge of one polarity only (say positive, for a positively charged 
meniscus). Accordingly, it may absorb the incoming positive charge brought in by 
conduction from the bulk, but it cannot inject back into the bulk the negative charge 
needed to maintain neutrality. As a result, a ‘sheath’ region virtually devoid of ions is 
created on the liquid in the neighbourhood of the interface. In order to compute the 
thickness of this layer, we assume first that its thickness 6 is small: 8 4 r ,  so that the 
far-field description of c$i given in (29) holds everywhere except in that sheath. For 
r(6’- a) 9 8, the field E,,$ is unperturbed by the sheath, so there is a net flow of negative 
charge Ekn, , f  away from the sheath into the liquid, In order to maintain neutrality, 
an identical flow of positive charge must be expelled from the sheath into the interface. 
Similarly, the flow of positive charge from the bulk into the sheath is n,f’Ek, which, 
by continuity also reaches the boundary. The flow of charge to the wall is thus 
n,(f+ +f - )  El;, exactly as in the absence of the sheath. This growing layer acts therefore 
merely as the reservoir of negative charge drawn by the field into the interior, and (6) 
remains effectively valid except within the narrow de-ionized region. In this case, 
ignoring Brownian diffusion, the shear boundary is given by the trajectory of a negative 
ion originating at H = a and r > m in the combination of electric and fluid flows (29) 
and (10) for x 9 1. One finds 

[4n (1 - cos .)]~ 1 .f-@/s,)i 
(3tana): 3 6 9 

O(x) - a = 

where the first fraction is a numerical constant of order unity (1.12 for 01 = aT). The 
discussion from $6.2, wheref-(p/co)i/e was seen to be substantially smaller than l/JTe) 
in all cases except for Hf and OH- ions, makes it clear that the angular width of this 
sheath is rather small in the cone. The analysis ignoring the presence of the sheath is 
therefore excellent even down to the region r - r* (x w 1). Further downstream, within 
the jet, when most of the current has incorporated itself into the surface at the expense 
of growth of the sheath, the cross-section of this de-ionized domain will still occupy a 
negligible fraction of the cross-section of the jet, except for water and formamide near 
the smallest achievable flow rates. 

6.5. Is  the cone nearly equipotential? 
The argument used in $5.2 to show that the meniscus is equipotential with errors 
O( 1 / e )  was somewhat weak. It showed only that Ek/ EO, = O( l/e), providing no direct 
information on Et to ensure that EJE;  6 1, as really required. This ratio may now 
be calculated in the far field using (3) for E i ,  the I / r 2  purely conductive expression for 
E,, and (1 8) for I. One finds 

where the leading numerical factor takes the value 0.3017 for a = aT. We thus 



The current emitted by highly conducting Taylor cones 181 

encounter the surprising fact that the ratio is not just measured in units of l/e, owing 
to the relatively large factor 0.3fle) in the expression. In the case of water ( E  = 80; 
f =  IS), the result is EJE;  = 0.068~-g (a = aT),  which is acceptably small at x = 1, but 
not so small (0.76) at x = 0.2. Because the current is scaled up over (yKQ/s)i by the large 
factorflE), the net result is that, even for some of the most polar usual solvents such 
as water and formamide, e is not large enough for the meniscus to be equipotential well 
below x = 1. In the photograph of the ethylene glycol jet shown in figure 4, the 
departure from a conical shape becomes noticeable at r = 1.8A ( A  based on a = aT is 
20 pm; r is measured from the virtual apex, as sketched in figure 6). At r = 1.24 the 
meniscus has already departed from a straight line by some 10 % of r .  If the meniscus 
is already slightly non-equipotential at r = A, one would expect that the electrical 
normal stress would have already started to be smaller than in Taylor’s analysis. In this 
case the curvature would also have to be reduced in order to maintain mechanical 
equilibrium, which provides a simple inertialess mechanism for jet formation. 

6.6. Comparison with earlier observations and theories 
The important experimental results of Cloupeau & Prunet-Foch, Gomez & Tang, and 
Jones & Thong have already been discussed. They correspond to a regime where inertia 
is considerable and e - 2. But the bibliography on electrified conical menisci contains 
many somewhat less systematic and extensive reports on spray currents under a variety 
of circumstances. Many of these measurements appear to contradict each other, 
probably because such menisci can form under more than one regime, as discussed 
most lucidly by Cloupeau & Prunet-Foch (1990). For instance, Kidd (1968) 
describes the case of glycerol solutions ( K  - 0.005 S m-’) electrosprayed in vacuo 
where the spray current is practically independent of liquid flow rate in the range 
4 x lo-’ < pQ < lo-’ kg s-’. However, his mode of operation involved very high 
capillary voltages, at which many conical tips form around the metal rim. Pfeifer & 
Hendricks (1968) have published a large amount of data on charge to mass ratios q / m  
for droplets electrosprayed (in vacuo) from glycerine doped with NaC1. It is interesting 
that they find the experimental result q / m  - (K/Q)0.429, amounting to I - Q0.571, 
which does not differ much from our own I -  (KQ);. These authors have also 
contributed a model incorporating ad hoc the ratio of the flow time over the electrical 
relaxation time, and have assumed that the emitted droplets were charge to one half 
of the Rayleigh limit.? The result was a prediction I - K$ Qt, which also does not differ 
much from our power law. We do not know if their corresponding menisci had only 
one cone or many, nor was there a description of the dependence of current on voltage 
at fixed flow rate. More recently Tang & Kebarle (1991) have studied the effect of liquid 
conductivity and ion molar conductance on electrosprayed currents from water- 
methanol mixtures. They found that I depends on conductivity but not on ion 
mobility in the solvent. However, their results are only for one rather large value of 
Q = 20 pl/min, at which they find that I - The substantial discrepancy with our 
own observations is most likely because they operate in a rather different regime, as 
indicated by the value of y2 in their work, which, for the case when K = 0.22 S m-l, is 
nearly two orders of magnitude higher than the maximum at which we have been able 
to form a stable conical meniscus with any fluid. 

t This hypothesis is based on an ‘energy minimization principle’, which has no rigorous basis for 
dissipative systems such as cone jets. We know now from the work of Jones & Thong (1971), Gomez 
& Tang (1991 a, b, 1993), and others, that the ratio of droplet charge to the Rayleigh limit charge may 
be larger than +, as well as smaller, depending on the flow rate. Interestingly, for a problem where the 
droplet diameter scales with r* and the current with I*, the average ratio of droplet charge to 
Rayleigh’s limiting value is a constant independent of flow rate, though perhaps varying with B .  
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7. Conclusions 
The following main conclusions can be drawn from this study on charge transfer in 

highly conducting electrified liquid cones. 
(i) At conductivities large enough for the jet to be much thinner than the needle 

diameter d,, cone jets emit currents which do not depend on the electrostatic variables. 
Combining the conditions 7 - 1 and dj  N (QtJ;, the required criterion for ‘high 

(43) 
conductivity’ may be written as 

(y t : /p) i /d ,  4 1. 
(ii) Ion mobilities are nearly irrelevant parameters under most conditions, with the 

exception of the most polar fluids at the smallest flow rates, where a 20 % effect of the 
finite mobility of Li+ may arise. The effect would be several times larger for more 
mobile ions such as H+ and OH-. 

(iii) At sufficiently small jet Reynolds numbers the liquid flow is well approximated 
by a spherical sink, and charge relaxation phenomena arise at distances from the cone 
apex of the order of r* = (QfJ;. Then, dimensional analysis shows that the jet terminal 
diameter scales roughly as r*, and the spray current as I = f ( s )  (yQK/c)$. These 
predictions are in agreement with observations, from which f ( c )  is determined (figure 

(iv) The current I ,  associated with convection of the charged interface is also of the 
order of (yQK/c); when r - r*.  An upper limit for I, near the apex may be computed 
in the limit B 9 1, yielding only one-quarter of the observed spray current. At least 
three-quarters of the flow of charge must therefore reach the head of the jet by 
conduction. 

(v) The previous scaling law for I also holds in several instances when Re* is not 
small, and this behaviour remains to be rationalized. 

(vi) The three characteristic quantities R*, r* and I*, with which the jet diameter and 
the magnitude of the emitted current scale, arise from breakdown conditions for 
Taylor’s theory when perturbed by a sink flow. This provides further evidence on the 
correctness of his description of the hydrostatics of electrified liquid cones. 

(vii) This work has been restricted to a particular configuration where the liquid tip 
is supported on a tube and the flow rate Q is controlled externally. However, because 
our conclusions are independent of geometrical and electrostatic details away from the 
cone tip, they apply far more generally, even in cases where Q is not controllable 
directly. There are numerous circumstances when Q is determined by relatively 
complex and still unresolved phenomena, such as when a liquid cone forms on a free 
droplet, on a droplet standing over a solid surface, or even on the free surface of a 
liquid pool. Even so, the relation I(Q) ought to remain unchanged in many such cases, 
because the region near the tip which determines the jet structure can only sense global 
quantities such as fluid properties, Q and I. Accordingly, the flow rate associated with 
such situations could be inferred from (18) and a measurement of the current. 
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Appendix. Lubrication-theory description of the jet 
The jet emitted from the conical meniscus is rather long and slender. It may therefore 

be described approximately via lubrication theory, as if its velocity were mostly axial, 
with a parabolic radial profile. Let and z be the radial and axial variables, 
respectively, in cylindrical coordinates, and let the radius of the jet be R(z) and u(z, 6) 
its axial velocity. We introduce the dimensionless axial velocity v and jet width y as 

in terms of which the main assumption of the lubrication approximation is 

2, = a(z) +yZb(z). 

The conditions that the electrical shear stress 7 be given at y = 1 approximately by 
p(du/i38 and that the total flow rate be Q, yields a and b so that 

The axial pressure gradient is given by 

dpldz = 2r /R.  

Let us now evaluate the quantity C, measuring the departure of the velocity profile 
from flatness. One must accordingly estimate the magnitude of the stress 7 = CTE,, 
where CT is related to I, through (9b). For a slender jet, Et is given approximately by 
E,, which may be treated as uniform across each section, and is thus simply related to 
the conduction current I,. Accordingly 

I,  = (1 + $ C ) ~ Q C T / R ,  Z, = nR2KE,. 

Introducing now the dimensionless surface and bulk currents of order one, 

is = I J I ;  i, = IJ I ,  

where I is the total spray current which we describe through (18), one obtains 

yR2 is i,f" 
C(l+iC)=--, 

PQ 4e 

But the group yRz/(pQ) is equal to Z(R/r*)2,  and is therefore of the order of 2. In the 
case of water,p/(4e) = 1.01. Finally i, i, = i,(l - i s )  is at most i, tends probably to zero 
at large values of z / r* ,  and would be at the head of the jet if is took the value there, 
as suggested at the end of 55.2. The conclusion is that 2 provides a rough measure for 
C, and thus, when 2 is small, the axial velocity profile will be nearly flat. 
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